Highest vectors of representations (total 13) ; the vectors are over the primal subalgebra. | −g3+g−8 | h4 | −g8+g−3 | g23 | g15 | g21 | g18 | g5 | g12 | g19 | g9 | g16 | g13 |
weight | 0 | 0 | 0 | 2ω2 | ω2+ω3 | ω2+ω3 | ω2+ω3 | 2ω3 | 2ω3 | 2ω3 | 2ω3 | 2ω3 | 2ω3 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | −ψ | 0 | ψ | 2ω2 | ω2+ω3−ψ | ω2+ω3 | ω2+ω3+ψ | 2ω3−2ψ | 2ω3−ψ | 2ω3 | 2ω3 | 2ω3+ψ | 2ω3+2ψ |
Isotypical components + highest weight | V−ψ → (0, 0, 0, -1) | V0 → (0, 0, 0, 0) | Vψ → (0, 0, 0, 1) | V2ω2 → (0, 2, 0, 0) | Vω2+ω3−ψ → (0, 1, 1, -1) | Vω2+ω3 → (0, 1, 1, 0) | Vω2+ω3+ψ → (0, 1, 1, 1) | V2ω3−2ψ → (0, 0, 2, -2) | V2ω3−ψ → (0, 0, 2, -1) | V2ω3 → (0, 0, 2, 0) | V2ω3+ψ → (0, 0, 2, 1) | V2ω3+2ψ → (0, 0, 2, 2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | W13 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
| Semisimple subalgebra component.
|
|
|
|
|
| Semisimple subalgebra component.
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 0 | 0 | 2ω2 ω1 −ω1+2ω2 2ω1−2ω2 0 0 −2ω1+2ω2 ω1−2ω2 −ω1 −2ω2 | ω2+ω3 ω1−ω2+ω3 ω2−ω3 −ω1+ω2+ω3 ω1−ω2−ω3 −ω2+ω3 −ω1+ω2−ω3 −ω2−ω3 | ω2+ω3 ω1−ω2+ω3 ω2−ω3 −ω1+ω2+ω3 ω1−ω2−ω3 −ω2+ω3 −ω1+ω2−ω3 −ω2−ω3 | ω2+ω3 ω1−ω2+ω3 ω2−ω3 −ω1+ω2+ω3 ω1−ω2−ω3 −ω2+ω3 −ω1+ω2−ω3 −ω2−ω3 | 2ω3 0 −2ω3 | 2ω3 0 −2ω3 | 2ω3 0 −2ω3 | 2ω3 0 −2ω3 | 2ω3 0 −2ω3 | 2ω3 0 −2ω3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | −ψ | 0 | ψ | 2ω2 ω1 −ω1+2ω2 2ω1−2ω2 0 0 −2ω1+2ω2 ω1−2ω2 −ω1 −2ω2 | ω2+ω3−ψ ω1−ω2+ω3−ψ ω2−ω3−ψ −ω1+ω2+ω3−ψ ω1−ω2−ω3−ψ −ω2+ω3−ψ −ω1+ω2−ω3−ψ −ω2−ω3−ψ | ω2+ω3 ω1−ω2+ω3 ω2−ω3 −ω1+ω2+ω3 ω1−ω2−ω3 −ω2+ω3 −ω1+ω2−ω3 −ω2−ω3 | ω2+ω3+ψ ω1−ω2+ω3+ψ ω2−ω3+ψ −ω1+ω2+ω3+ψ ω1−ω2−ω3+ψ −ω2+ω3+ψ −ω1+ω2−ω3+ψ −ω2−ω3+ψ | 2ω3−2ψ −2ψ −2ω3−2ψ | 2ω3−ψ −ψ −2ω3−ψ | 2ω3 0 −2ω3 | 2ω3 0 −2ω3 | 2ω3+ψ ψ −2ω3+ψ | 2ω3+2ψ 2ψ −2ω3+2ψ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M−ψ | M0 | Mψ | M2ω2⊕M−ω1+2ω2⊕Mω1⊕M−2ω1+2ω2⊕2M0⊕M2ω1−2ω2⊕M−ω1⊕Mω1−2ω2⊕M−2ω2 | Mω2+ω3−ψ⊕M−ω1+ω2+ω3−ψ⊕Mω1−ω2+ω3−ψ⊕M−ω2+ω3−ψ⊕Mω2−ω3−ψ⊕M−ω1+ω2−ω3−ψ⊕Mω1−ω2−ω3−ψ⊕M−ω2−ω3−ψ | Mω2+ω3⊕M−ω1+ω2+ω3⊕Mω1−ω2+ω3⊕M−ω2+ω3⊕Mω2−ω3⊕M−ω1+ω2−ω3⊕Mω1−ω2−ω3⊕M−ω2−ω3 | Mω2+ω3+ψ⊕M−ω1+ω2+ω3+ψ⊕Mω1−ω2+ω3+ψ⊕M−ω2+ω3+ψ⊕Mω2−ω3+ψ⊕M−ω1+ω2−ω3+ψ⊕Mω1−ω2−ω3+ψ⊕M−ω2−ω3+ψ | M2ω3−2ψ⊕M−2ψ⊕M−2ω3−2ψ | M2ω3−ψ⊕M−ψ⊕M−2ω3−ψ | M2ω3⊕M0⊕M−2ω3 | M2ω3⊕M0⊕M−2ω3 | M2ω3+ψ⊕Mψ⊕M−2ω3+ψ | M2ω3+2ψ⊕M2ψ⊕M−2ω3+2ψ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M−ψ | M0 | Mψ | M2ω2⊕M−ω1+2ω2⊕Mω1⊕M−2ω1+2ω2⊕2M0⊕M2ω1−2ω2⊕M−ω1⊕Mω1−2ω2⊕M−2ω2 | Mω2+ω3−ψ⊕M−ω1+ω2+ω3−ψ⊕Mω1−ω2+ω3−ψ⊕M−ω2+ω3−ψ⊕Mω2−ω3−ψ⊕M−ω1+ω2−ω3−ψ⊕Mω1−ω2−ω3−ψ⊕M−ω2−ω3−ψ | Mω2+ω3⊕M−ω1+ω2+ω3⊕Mω1−ω2+ω3⊕M−ω2+ω3⊕Mω2−ω3⊕M−ω1+ω2−ω3⊕Mω1−ω2−ω3⊕M−ω2−ω3 | Mω2+ω3+ψ⊕M−ω1+ω2+ω3+ψ⊕Mω1−ω2+ω3+ψ⊕M−ω2+ω3+ψ⊕Mω2−ω3+ψ⊕M−ω1+ω2−ω3+ψ⊕Mω1−ω2−ω3+ψ⊕M−ω2−ω3+ψ | M2ω3−2ψ⊕M−2ψ⊕M−2ω3−2ψ | M2ω3−ψ⊕M−ψ⊕M−2ω3−ψ | M2ω3⊕M0⊕M−2ω3 | M2ω3⊕M0⊕M−2ω3 | M2ω3+ψ⊕Mψ⊕M−2ω3+ψ | M2ω3+2ψ⊕M2ψ⊕M−2ω3+2ψ |
2 & | -1 & | 0\\ |
-1 & | 1 & | 0\\ |
0 & | 0 & | 2\\ |