Processing math: 100%
Subalgebra B12+A31C15
83 out of 119
Computations done by the calculator project.

Subalgebra type: B12+A31 (click on type for detailed printout).
Subalgebra is (parabolically) induced from B12 .
Centralizer: A81 .
The semisimple part of the centralizer of the semisimple part of my centralizer: B12+A31
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 0)
Contained up to conjugation as a direct summand of: B12+A81+A31 .

Elements Cartan subalgebra scaled to act by two by components: B12: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, A31: (0, 0, 2, 4, 3): 6
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: g25, g1, g9+g19
Positive simple generators: g25, g1, g19+g9
Cartan symmetric matrix: (210110002/3)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (220240006)
Decomposition of ambient Lie algebra: 6V2ω33Vω2+ω3V2ω23V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V2ω3+2ψV2ω3+ψVω2+ω3+ψ2V2ω3Vω2+ω3V2ω2VψV2ω3ψVω2+ω3ψV0V2ω32ψVψ
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 13) ; the vectors are over the primal subalgebra.g3+g8h4g8+g3g23g15g21g18g5g12g19g9g16g13
weight0002ω2ω2+ω3ω2+ω3ω2+ω32ω32ω32ω32ω32ω32ω3
weights rel. to Cartan of (centralizer+semisimple s.a.). ψ0ψ2ω2ω2+ω3ψω2+ω3ω2+ω3+ψ2ω32ψ2ω3ψ2ω32ω32ω3+ψ2ω3+2ψ
Isotypic module decomposition over primal subalgebra (total 13 isotypic components).
Isotypical components + highest weightVψ → (0, 0, 0, -1)V0 → (0, 0, 0, 0)Vψ → (0, 0, 0, 1)V2ω2 → (0, 2, 0, 0)Vω2+ω3ψ → (0, 1, 1, -1)Vω2+ω3 → (0, 1, 1, 0)Vω2+ω3+ψ → (0, 1, 1, 1)V2ω32ψ → (0, 0, 2, -2)V2ω3ψ → (0, 0, 2, -1)V2ω3 → (0, 0, 2, 0)V2ω3+ψ → (0, 0, 2, 1)V2ω3+2ψ → (0, 0, 2, 2)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g3+g8
Cartan of centralizer component.
h4
g8+g3
Semisimple subalgebra component.
g23
g24
g1
2g25
2h1
2h5+4h4+4h3+4h2+4h1
2g25
2g1
2g24
4g23
g15
g17
g7
g14
g10
g11
g20
g18
g21
g22
g2
g6
g6
g2
g22
g21
g18
g20
g11
g10
g14
g7
g17
g15
g5
g4
2g13
g12
g3g8
2g16
Semisimple subalgebra component.
g19g9
3h5+4h4+2h3
2g9+2g19
g19
h52h42h3
2g19
g16
g8g3
2g12
g13
g4
2g5
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0002ω2
ω1
ω1+2ω2
2ω12ω2
0
0
2ω1+2ω2
ω12ω2
ω1
2ω2
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω2+ω3
ω1ω2ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω2+ω3
ω1ω2ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω2+ω3
ω1ω2ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
2ω3
0
2ω3
2ω3
0
2ω3
2ω3
0
2ω3
2ω3
0
2ω3
2ω3
0
2ω3
2ω3
0
2ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizerψ0ψ2ω2
ω1
ω1+2ω2
2ω12ω2
0
0
2ω1+2ω2
ω12ω2
ω1
2ω2
ω2+ω3ψ
ω1ω2+ω3ψ
ω2ω3ψ
ω1+ω2+ω3ψ
ω1ω2ω3ψ
ω2+ω3ψ
ω1+ω2ω3ψ
ω2ω3ψ
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω2+ω3
ω1ω2ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
ω2+ω3+ψ
ω1ω2+ω3+ψ
ω2ω3+ψ
ω1+ω2+ω3+ψ
ω1ω2ω3+ψ
ω2+ω3+ψ
ω1+ω2ω3+ψ
ω2ω3+ψ
2ω32ψ
2ψ
2ω32ψ
2ω3ψ
ψ
2ω3ψ
2ω3
0
2ω3
2ω3
0
2ω3
2ω3+ψ
ψ
2ω3+ψ
2ω3+2ψ
2ψ
2ω3+2ψ
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.MψM0MψM2ω2Mω1+2ω2Mω1M2ω1+2ω22M0M2ω12ω2Mω1Mω12ω2M2ω2Mω2+ω3ψMω1+ω2+ω3ψMω1ω2+ω3ψMω2+ω3ψMω2ω3ψMω1+ω2ω3ψMω1ω2ω3ψMω2ω3ψMω2+ω3Mω1+ω2+ω3Mω1ω2+ω3Mω2+ω3Mω2ω3Mω1+ω2ω3Mω1ω2ω3Mω2ω3Mω2+ω3+ψMω1+ω2+ω3+ψMω1ω2+ω3+ψMω2+ω3+ψMω2ω3+ψMω1+ω2ω3+ψMω1ω2ω3+ψMω2ω3+ψM2ω32ψM2ψM2ω32ψM2ω3ψMψM2ω3ψM2ω3M0M2ω3M2ω3M0M2ω3M2ω3+ψMψM2ω3+ψM2ω3+2ψM2ψM2ω3+2ψ
Isotypic characterMψM0MψM2ω2Mω1+2ω2Mω1M2ω1+2ω22M0M2ω12ω2Mω1Mω12ω2M2ω2Mω2+ω3ψMω1+ω2+ω3ψMω1ω2+ω3ψMω2+ω3ψMω2ω3ψMω1+ω2ω3ψMω1ω2ω3ψMω2ω3ψMω2+ω3Mω1+ω2+ω3Mω1ω2+ω3Mω2+ω3Mω2ω3Mω1+ω2ω3Mω1ω2ω3Mω2ω3Mω2+ω3+ψMω1+ω2+ω3+ψMω1ω2+ω3+ψMω2+ω3+ψMω2ω3+ψMω1+ω2ω3+ψMω1ω2ω3+ψMω2ω3+ψM2ω32ψM2ψM2ω32ψM2ω3ψMψM2ω3ψM2ω3M0M2ω3M2ω3M0M2ω3M2ω3+ψMψM2ω3+ψM2ω3+2ψM2ψM2ω3+2ψ

Semisimple subalgebra: W_{4}+W_{10}
Centralizer extension: W_{1}+W_{2}+W_{3}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00): (300.00, 350.00)
1: (0.00, 1.00, 0.00, 0.00): (250.00, 350.00)
2: (0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00): (200.00, 300.00)




Made total 7138069 arithmetic operations while solving the Serre relations polynomial system.
The total number of arithmetic operations I needed to solve the Serre relations polynomial system was larger than 1 000 000. I am printing out the Serre relations system for you: maybe that can help improve the polynomial system algorithms.
Subalgebra realized.
3*2 (unknown) gens:
(
g_{-25}, g_{25},
g_{1}, g_{-1},
x_{3} g_{-5}+x_{4} g_{-9}+x_{5} g_{-12}+x_{6} g_{-13}+x_{7} g_{-16}+x_{8} g_{-19}, x_{16} g_{19}+x_{15} g_{16}+x_{14} g_{13}+x_{13} g_{12}+x_{12} g_{9}+x_{11} g_{5})

Unknown splitting cartan of centralizer.
x_{21} h_{5}+x_{20} h_{4}+x_{19} h_{3}+x_{18} h_{2}+x_{17} h_{1}
h: (2, 2, 2, 2, 1), e = combination of g_{25} , f= combination of g_{-25} h: (-1, 0, 0, 0, 0), e = combination of g_{-1} , f= combination of g_{1} h: (0, 0, 2, 4, 3), e = combination of g_{5} g_{9} g_{12} g_{13} g_{16} g_{19} , f= combination of g_{-5} g_{-9} g_{-12} g_{-13} g_{-16} g_{-19} Positive weight subsystem: 5 vectors: (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 2, 0)
Symmetric Cartan default scale: \begin{pmatrix}
2 & -1 & 0\\
-1 & 1 & 0\\
0 & 0 & 2\\
\end{pmatrix}Character ambient Lie algebra: 6V_{2\omega_{3}}+3V_{\omega_{2}+\omega_{3}}+V_{2\omega_{2}}+3V_{-\omega_{1}+\omega_{2}+\omega_{3}}+3V_{\omega_{1}-\omega_{2}+\omega_{3}}+V_{-\omega_{1}+2\omega_{2}}+V_{\omega_{1}}+3V_{-\omega_{2}+\omega_{3}}+V_{-2\omega_{1}+2\omega_{2}}+11V_{0}+V_{2\omega_{1}-2\omega_{2}}+3V_{\omega_{2}-\omega_{3}}+V_{-\omega_{1}}+V_{\omega_{1}-2\omega_{2}}+3V_{-\omega_{1}+\omega_{2}-\omega_{3}}+3V_{\omega_{1}-\omega_{2}-\omega_{3}}+V_{-2\omega_{2}}+3V_{-\omega_{2}-\omega_{3}}+6V_{-2\omega_{3}}
A necessary system to realize the candidate subalgebra.
2x_{21}^{2}x_{22} -2x_{20} x_{21} x_{22} +x_{20}^{2}x_{22} -x_{19} x_{20} x_{22} +x_{19}^{2}x_{22} -x_{18} x_{19} x_{22}
+x_{18}^{2}x_{22} -x_{17} x_{18} x_{22} +x_{17}^{2}x_{22} -1= 0
x_{17} = 0
x_{18} -2x_{17} = 0
x_{8} x_{16} +2x_{7} x_{15} +x_{6} x_{14} +2x_{5} x_{13} +2x_{4} x_{12} +x_{3} x_{11} -3= 0
x_{7} x_{13} +x_{6} x_{12} +x_{4} x_{11} = 0
x_{8} x_{13} +x_{7} x_{12} +x_{5} x_{11} = 0
x_{5} x_{15} +x_{4} x_{14} +x_{3} x_{12} = 0
x_{8} x_{16} +2x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} -2= 0
x_{8} x_{15} +x_{7} x_{14} +x_{5} x_{12} = 0
x_{5} x_{16} +x_{4} x_{15} +x_{3} x_{13} = 0
x_{7} x_{16} +x_{6} x_{15} +x_{4} x_{13} = 0
x_{8} x_{16} +x_{7} x_{15} +x_{5} x_{13} -1= 0
2x_{3} x_{21} -x_{3} x_{20} = 0
2x_{4} x_{21} -x_{4} x_{19} = 0
2x_{5} x_{21} -x_{5} x_{20} +x_{5} x_{19} -x_{5} x_{18} = 0
x_{6} x_{20} -x_{6} x_{19} = 0
x_{7} x_{20} -x_{7} x_{18} = 0
x_{8} x_{19} -x_{8} x_{18} = 0
2x_{11} x_{21} -x_{11} x_{20} = 0
2x_{12} x_{21} -x_{12} x_{19} = 0
2x_{13} x_{21} -x_{13} x_{20} +x_{13} x_{19} -x_{13} x_{18} = 0
x_{14} x_{20} -x_{14} x_{19} = 0
x_{15} x_{20} -x_{15} x_{18} = 0
x_{16} x_{19} -x_{16} x_{18} = 0
The above system after transformation.
2x_{21}^{2}x_{22} -2x_{20} x_{21} x_{22} +x_{20}^{2}x_{22} -x_{19} x_{20} x_{22} +x_{19}^{2}x_{22} -x_{18} x_{19} x_{22}
+x_{18}^{2}x_{22} -x_{17} x_{18} x_{22} +x_{17}^{2}x_{22} -1= 0
x_{17} = 0
x_{18} -2x_{17} = 0
x_{8} x_{16} +2x_{7} x_{15} +x_{6} x_{14} +2x_{5} x_{13} +2x_{4} x_{12} +x_{3} x_{11} -3= 0
x_{7} x_{13} +x_{6} x_{12} +x_{4} x_{11} = 0
x_{8} x_{13} +x_{7} x_{12} +x_{5} x_{11} = 0
x_{5} x_{15} +x_{4} x_{14} +x_{3} x_{12} = 0
x_{8} x_{16} +2x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} -2= 0
x_{8} x_{15} +x_{7} x_{14} +x_{5} x_{12} = 0
x_{5} x_{16} +x_{4} x_{15} +x_{3} x_{13} = 0
x_{7} x_{16} +x_{6} x_{15} +x_{4} x_{13} = 0
x_{8} x_{16} +x_{7} x_{15} +x_{5} x_{13} -1= 0
2x_{3} x_{21} -x_{3} x_{20} = 0
2x_{4} x_{21} -x_{4} x_{19} = 0
2x_{5} x_{21} -x_{5} x_{20} +x_{5} x_{19} -x_{5} x_{18} = 0
x_{6} x_{20} -x_{6} x_{19} = 0
x_{7} x_{20} -x_{7} x_{18} = 0
x_{8} x_{19} -x_{8} x_{18} = 0
2x_{11} x_{21} -x_{11} x_{20} = 0
2x_{12} x_{21} -x_{12} x_{19} = 0
2x_{13} x_{21} -x_{13} x_{20} +x_{13} x_{19} -x_{13} x_{18} = 0
x_{14} x_{20} -x_{14} x_{19} = 0
x_{15} x_{20} -x_{15} x_{18} = 0
x_{16} x_{19} -x_{16} x_{18} = 0
For the calculator:
(DynkinType =B^{1}_2+A^{3}_1; ElementsCartan =((2, 2, 2, 2, 1), (-1, 0, 0, 0, 0), (0, 0, 2, 4, 3)); generators =(g_{-25}, g_{25}, g_{1}, g_{-1}, x_{3} g_{-5}+x_{4} g_{-9}+x_{5} g_{-12}+x_{6} g_{-13}+x_{7} g_{-16}+x_{8} g_{-19}, x_{16} g_{19}+x_{15} g_{16}+x_{14} g_{13}+x_{13} g_{12}+x_{12} g_{9}+x_{11} g_{5}) );
FindOneSolutionSerreLikePolynomialSystem{}( 2x_{21}^{2}x_{22} -2x_{20} x_{21} x_{22} +x_{20}^{2}x_{22} -x_{19} x_{20} x_{22} +x_{19}^{2}x_{22} -x_{18} x_{19} x_{22} +x_{18}^{2}x_{22} -x_{17} x_{18} x_{22} +x_{17}^{2}x_{22} -1, x_{17} , x_{18} -2x_{17} , x_{8} x_{16} +2x_{7} x_{15} +x_{6} x_{14} +2x_{5} x_{13} +2x_{4} x_{12} +x_{3} x_{11} -3, x_{7} x_{13} +x_{6} x_{12} +x_{4} x_{11} , x_{8} x_{13} +x_{7} x_{12} +x_{5} x_{11} , x_{5} x_{15} +x_{4} x_{14} +x_{3} x_{12} , x_{8} x_{16} +2x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} -2, x_{8} x_{15} +x_{7} x_{14} +x_{5} x_{12} , x_{5} x_{16} +x_{4} x_{15} +x_{3} x_{13} , x_{7} x_{16} +x_{6} x_{15} +x_{4} x_{13} , x_{8} x_{16} +x_{7} x_{15} +x_{5} x_{13} -1, 2x_{3} x_{21} -x_{3} x_{20} , 2x_{4} x_{21} -x_{4} x_{19} , 2x_{5} x_{21} -x_{5} x_{20} +x_{5} x_{19} -x_{5} x_{18} , x_{6} x_{20} -x_{6} x_{19} , x_{7} x_{20} -x_{7} x_{18} , x_{8} x_{19} -x_{8} x_{18} , 2x_{11} x_{21} -x_{11} x_{20} , 2x_{12} x_{21} -x_{12} x_{19} , 2x_{13} x_{21} -x_{13} x_{20} +x_{13} x_{19} -x_{13} x_{18} , x_{14} x_{20} -x_{14} x_{19} , x_{15} x_{20} -x_{15} x_{18} , x_{16} x_{19} -x_{16} x_{18} )